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Abstract. We show that (∼ 1/(Q2)k) power corrections to the spin structure function g1 at small x are gen-
erated perturbatively from the regulated infrared divergencies. We present the explicit series of such terms
as well as the formulae for their resummation. These contributions are not included in the standard analy-
sis of the experimental data. We argue that accounting for such terms can sizably change the impact of the
power corrections conventionally attributed to the higher twists.

PACS. 12.38.Cy

1 Introduction

The theoretical description of the Q2-dependence of the
structure function g1 in perturbative QCD is mostly per-
formed for thekinematic regionof largeQ2.However, for the
phenomenological analysis of the results of the COMPASS
collaboration one needs as far as possible knowledge of g1
at small x and small Q2 (see e.g. [1]). Let us recall that the
conventional standard approach (SA) based on combining
the DGLAP evolution equations [2–5] with phenomenolog-
ical input for the initial parton densities [6–10] cannot be
used for the description of g1 in this region. Strictly speak-
ing, the SA can be applied only for large values of x (x∼ 1)
and large Q2: Q2� Q20, where Q

2
0 is the starting point of

theQ2-evolution. Indeed the small-x region lies beyond the
reach of the SA because DGLAP does not include the total
resummation of terms ∝ lnk 1/x. In order to describe the
experimental data at small x, in the SA one has to include
singular terms ∝ x−α in the expressions for the initial par-
ton densities. Such factors act as the leading singularities
(simple poles) in the Mellin transform of g1(x) and provide
g1 with Regge asymptotics: g1 ∼ x−α when x→ 0.
On the other hand, in our approach [11–13] based on the

total resummation of the leading lnk 1/x terms in perturba-
tive QCD, the Regge behavior of g1 at x→ 0 appears natu-
rally, independent of the value ofQ2. Indeed it results from
the leading singularities of the anomalous dimensions and
coefficient functions, which are branching points and not
simple poles. The singularities of the anomalousdimensions
and coefficient functions coincide. This is very important
because it guarantees the independence of Q2 of the inter-
cepts of g1. Furthermore by fitting the experimental data
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in our approach one does not need ad hoc singular factors
∼ x−α in the initial parton densities.
The theoretical aspects of the power corrections to the

DIS structure functions were considered in [14–19] at large
x andQ2. The interplay between the perturbative and non-
perturbative corrections in hard kinematics was recently
considered in detail in [20–23]. In fitting experimental data
in the small-x region, the discrepancies from the SA pre-
dictions are conventionally interpreted (see e.g. [24, 25]) as
(non-perturbative) higher twist power (∼ (1/Q2)k) contri-
butions. However, as the small-x region is beyond the reach
of SA, the real size of the higher twist corrections can be
erroneously overestimated. It is clear that a systematic ac-
count of power corrections ∼ (1/Q2)k can be satisfactory
only when using formulas that already account for the re-
summation of logarithmic contributions.
We have recently proposed in [26] a generalization of

our previous results [11–13] for g1. Although this exten-
sion goes beyond the logarithmic accuracy that we keep,
it looks quite natural. In addition to the standard region
of large Q2, this generalization can describe the small-Q2

region, though in a model-dependent way. Our suggestion,
based on the analysis of the Feynman graphs for g1 at small
x, is to replace Q2 by Q2+µ2 in our previous formulas,
with µ being the IR cut-off. Such a shift also leads to the
replacement of the variable x by x′ = x+µ2/2pq. The vari-
able x′ is similar to the Nachtmann variable.1

In the present paper we show that regulating the IR
divergencies also is the origin of the power corrections for
g1 at small x. They differ from the well-known power cor-
rections [14–19] related to the resummation of the Su-
dakov logarithms: first, they come from the ladder Feyn-

1 We are grateful to L.N. Lipatov for reminding us of this.
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man graphs in the Regge kinematics where virtual gluons
are not always soft; then, in contrast to [14–23], we never
use2 the parametrization αs = α(Q

2) and do not consider
the inclusions of power terms [28] into the standard ex-
pressions for αs. We present the explicit formulas for the
total resummation of these new corrections and show that
at large Q2 they are ∼ 1/(Q2)k but in the small-Q2 region
they are ∼ (Q2)k.
The paper is organized as follows: in Sect. 2 we explain

why there should be IR perturbative and non-perturbative
power corrections to g1. We also discuss in this section the
difference in the IR properties of g1 at large and small x. In
Sect. 3 we recall the essence of the model for g1 suggested
in [26] and list explicit expressions for the singlet and non-
singlet g1 in the kinematic region of small x and arbitrary
Q2. In Sect. 4 we give in more detail than in [26] theoretical
arguments in favor of those expressions. The expressions
for g1 enlisted in Sect. 3 and proved in Sect. 4 account for
the total resummation of leading logarithms of x and Q2

when the Q2 are large, but they are also valid for smallQ2.
They implicitly include the power Q2-corrections. The ex-
plicit expressions for the power corrections are extracted
from those formulas in Sect. 5. We show here that the
power corrections at large and small Q2 are quite differ-
ent but the lowest twist contribution to g1 is always leading
regardless ofQ2. Finally, Sect. 6 is for a discussion.

2 Origin of the IR dependent contributions
to g1

It is well known that the DIS structure functions are intro-
duced through the hadronic tensorWµν . In particular, the
spin-dependent part ofWµν for the electron–proton DIS is
parameterized by the structure functions g1 and g2:

W spinµν =

iεµνλρ
Mqλ

pq

[
Sρ g1(x,Q

2)+

(
Sρ−

Sq

pq

)
g2(x,Q

2)

]
, (1)

where p,M, S are the proton momentum, mass and spin,
respectively, and q is the momentum of the virtual pho-
ton. The spin structure functions g1,2 have non-singlet,
gNS1,2 , and singlet, g

S
1,2, components. In general, g1,2 (and all

other DIS structure functions) acquire both perturbative
and non-perturbative QCD contributions.
In the first place, there is a non-perturbative term

WNPTµν in the region of small Q2. For instance, there are
known examples of the lattice calculations for some struc-
ture functions (see e.g. [29]), although basically WNPTµν is
poorly known.
The other part, WPTµν , of Wµν includes both perturba-

tive and non-perturbative QCD contributions. The stan-
dard way to calculate the structure functions is using
the factorization. According to this, Wµν is regarded as

2 It is known [27] that these parameterizations fail for g1 at
small x.

a convolution,

WPTµν =W
q
µν ⊗Φq+W

g
µν ⊗Φg , (2)

of the partonic tensorsW qµν andW
g
µν (where q and g label

the incoming parton, i.e. a quark or a gluon, respectively),
and where we have the probabilities Φq,g to find this parton
(quark or gluon) in the incoming hadron. The probabilities
Φq,g include both perturbative and non-perturbative con-
tributions, whereas purely perturbative tensors W q,gµν de-
scribe their x- and Q2-evolutions. There are no known ex-
plicit expressions for Φq,g. Instead, they are approximated
by the initial parton densities δq and δg defined from fitting
the experimental data atQ2 ∼ 1 GeV2 and x∼ 1. The par-
tonic tensorsW qµν and W

g
µν evolve these densities into the

region where Q2� µ2 and x� 1, with µ2 being the start-
ing point of the Q2-evolution. Such a contribution to Wµν
is called the lowest twist contribution WLTµν . Besides this,
there are the higher twists contributions WHTµν . They can
be interpreted either in terms of a more involved convolu-
tion or as essentially non-perturbative objects.
In order to calculate W q,gµν , one has to regulate the IR

singularities in the Feynman graphs involved. Such a regu-
lation is different for large and small x. At large x one can
use DGLAP. In DGLAP this problem is solved assuming
a non-zero virtuality µ2 for the initial partons and impos-
ing the ordering

µ2 < k21 ⊥ < k
2
2 ⊥ . . . < k

2
n ⊥ <Q

2 (3)

on the transverse momenta of the ladder partons (the nu-
meration in (3) runs from the bottom to the top of the
ladders). Equation (3) makes it manifest that kr ⊥ acts as
an IR cut-off for integrating over kr+1. However, the order-
ing allows one to collect the contributions that are leading
at large x only. In order to account for the leading (double-
logarithmic) contributions at x� 1, the upper limit of the
integration in (3) should be changed for (p+ q)2 ≈ 2pq and
the ordering should be lifted. Without the ordering, the
IR singularities in the ladder rungs are no longer regulated
automatically, so an IR cut-off should be introduced for in-
tegration over every loop momentum. This is the reason
why the µ-dependence of g1 is getting more involved at
small x. Usually the cut-off is identified with µ, the start-
ing point of the Q2-evolution, though it is not mandatory.
Obviously, the value of µ should be large enough to justify
using the perturbative QCD:

k2i > µ
2 >Λ2QCD . (4)

Generally speaking, there are different ways to introduce
IR cut-offs, but providing IR divergent propagators with
fictitious masses is most wide-spread. Obviously, no ob-
servables should depend on the value of µ and on the ways
of its introducing. It means that the explicit µ-dependence
in W q,gµν should be compensated by a µ-dependence of δq
and δg. However, the latter are known as phenomenological
expressions containing a set of numerical parameters fixed
from fitting the experimental data. Those parameters are
supposed to be µ-dependent, though in an implicit way.
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Before considering the IR properties of g1 at small x, let
us discuss the well-known expression for the non-singlet g1
in the standard approach:

gNS1
(
x,Q2, µ2

)
=
(
e2q/2
) ∫ i∞
−i∞

dω

2πi
x−ωCq(ω)δq(ω)

× exp

[∫ Q2
µ2

dk2⊥
k2⊥
γqq
(
k2⊥, αs(k

2
⊥)
)]
, (5)

where eq is the electric charge of the quark, Cq is the coeffi-
cient function andγqq is theDGLAPnon-singlet anomalous
dimension. When γqq is taken in LO, the integral in (5) is
known to be (1/b) ln[ln(Q2/µ2)/ ln(µ2/Λ2QCD)], with b be-
ing the first coefficient of the Gell-Mann–Low function. The
expression for the singlet g1 looks similar, though more in-
volved. Both the coefficient functions and the anomalous
dimensions in SA are known in a few first orders in αs. It
means that using (5) is theoretically based for the kinematic
regionwhere thexare not far from1andQ2� µ2 ≈ 1 GeV2.
The expression for g1 in (5) depends on the value of µ. This
dependence is supposed to disappear when g1 is comple-
mentedby a contribution gHT1 extracted fromW

HT
µν . In prac-

tice, treating of the experimental data on polarized DIS is
carried out as follows (see e.g. the recent papers [24, 25] and
references therein): the data are compared with g1 of (5)
and the discrepancy is attributed to the impact of the higher
twists. However, SA for g1 is reliable at largex. At the small-
x region it shouldbemodified. In the next sectionwepresent
explicit expressions for gS1 and g

NS
1 replacing the DGLAP

expressions in the small-x region.

3 Expressions for g1 at small x
and arbitrary Q2

When x� 1, the contributions ∼ lnk(1/x) are large, so
they should be accounted for to all orders in the QCD
coupling. The total resummation of the leading logarithms
of x for g1 was done in [11–13] for the region of Q

2 � µ2.
We remind the reader that, contrary to DGLAP, the ex-
pressions for g1 in [11–13] are valid both for large Q

2 and
for Q2 ∼ µ2. Recently, in [26] we have suggested a simple
prescription to generalize those results to arbitrary values
of Q2: in the formulas of [11–13] Q2 should be replaced by
Q2+µ2. This conclusion follows from the observation that
the contributions of Feynman graphs to g1 at small x de-
pend onQ2 throughQ2+µ2 only. It automatically leads to
the shift x→ x+z, with z = µ2/2pq. As the prescription is
beyond the logarithmic accuracy that we kept in our previ-
ous papers, we call it a model. The theoretical grounds of
this model are given in the next section. According to our
results, gNS1 , the non-singlet component of g1 at the small-x
region, is given by the following expression:

gNS1
(
x+ z,Q2+µ2

)
=
(
e2q/2
) ∫ i∞
−i∞

dω

2πi

(
1

z+x

)ω
CNS(ω)

× δq(ω)

(
Q2+µ2

µ2

)HNS(ω)
, (6)

with the new coefficient functions CNS,

CNS(ω) =
ω

ω−HNS(ω)
(7)

and the anomalous dimensions HNS,

HNS = (1/2)
[
ω−
√
ω2−B(ω)

]
, (8)

where

B(ω) = (4πCF(1+ω/2)A(ω)+D(ω))/(2π
2) . (9)

D(ω) andA(ω) in (9) are expressed in terms of ρ= ln(1/x),
η = ln(µ2/Λ2QCD), b= (33−2nf)/12π and the color factors
CF = 4/3,N = 3:

D(ω) =
2CF
b2N

∫ ∞
0

dρe−ωρ ln

(
ρ+η

η

)

×

[
ρ+η

(ρ+η)2+π2
+
1

ρ+η

]
, (10)

A(ω) =
1

b

[
η

η2+π2
−

∫ ∞
0

dρe−ωρ

(ρ+η)2+π2

]
. (11)

HNS and CNS account for the DL and SL contributions to
all orders in αs and, contrary to the DGLAP phenomenol-
ogy, δq does not contain singular factors. The IR cut-off
µ obeys (4). Expression (6) is valid for large Q2, i.e. for
Q2� µ2, where x� z, and for small Q2, Q2 ≤ µ2, where
x≤ z. The expression for the singlet component, gS1 , of g1
is more involved:

gS1 = g
(+)
1 + g

(−)
1 , (12)

with

g
(±)
1 =

〈e2q〉

2

∫ i∞
−i∞

dω

2πi

(
1

z+x

)ω

×

(
C(±)q δq−

A′

2πω2
C(±)g δg

)(
Q2+µ2

µ2

)Ω(±)
,

(13)

where 〈e2q〉 stands for the sum of the electric charges: 〈e
2
q〉=

10/9 for nf = 4, δq and δg are the initial quark and gluon
densities.
The exponents Ω(±) and coefficient functions C

(±)
q,g are

Ω(±) =
1

2
[Hqq+Hgg±R] . (14)

C(+)q =
ω

RT

[
(Hqq−Ω(−))(ω−Hgg)

+HqgHgq+Hgq(ω−Ω(−))
]
,

C(−)q =
ω

RT

[
(Ω(+)−Hqq)(ω−Hgg)

−HqgHgq+Hgq(Ω(+)−ω)
]
,
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C(+)g =
ω

RT

[
(Hgg−Ω(−))(ω−Hqq)

+HqgHgq+Hqg(ω−Ω(−))
](
−
A′

2πω2

)
,

C(−)g =
ω

RT

[
(Ω(+)−Hgg)(ω−Hqq)

−HqgHgq+Hqg(Ω(+)−ω)
](
−
A′

2πω2

)
.

(15)

Here

R=
√
(Hqq−Hgg)2+4HqgHgq ,

T = ω2−ω(Hgg+Hqq)+ (HggHqq−HgqHqg) (16)

and

Hqq =
1

2

[
ω+Z+

bqq− bgg
Z

]
, Hqg =

bqg

Z
,

Hgg =
1

2

[
ω+Z−

bqq− bgg
Z

]
, Hgq =

bgq

Z
, (17)

where

Z =
1
√
2

{(
ω2−2(bqq+ bgg)

)

+
[ (
ω2−2(bqq+ bgg)

)2
−4(bqq− bgg)

2

−16bgqbqg
]1/2}1/2

,

(18)

with

bik = aik+Vik . (19)

The Born contributions aik are defined as follows:

aqq =
A(ω)CF
2π

, agq =−
nfA

′(ω)

2π
,

aqg =
A′(ω)CF
π

, agg =
4NA(ω)

2π
. (20)

Finally, the non-ladder contributions are

Vik =
mik

π2
D(ω) , (21)

with

mqq =
CF

2N
, mgg =−2N

2,

mgq = nf
N

2
, mqg =−NCF . (22)

The additional factor
(
− A′

2πω2

)
in the coefficients C

(±)
g

in (15), with

A′(ω) =
1

b

[
1

η
−

∫ ∞
0

ρ
dρe−ωρ

(ρ+η)2

]
, (23)

is the small-ω estimate for the quark box diagram that
dominates in the Born term relating the initial gluons to

the electromagnetic current. A′(ω) is the Mellin represen-
tation of the QCD running coupling αs involved in the
quark box.
Besides resummation of the leading logarithms, (6) and

(12) differ from DGLAP in the parametrization of αs: the
DGLAP prescription is αs = αs(Q

2), whereas in our ap-
proach αs is replaced by A andA

′, defined in (11) and (23).
Such a difference results in a drastic difference in the form
of the Q2-dependence of g1 between our approach and SA:
instead of the factor (Q2+µ2)/µ2 in (6) and (12), the SA
leads to ln(Q2/Λ2QCD).

4 Theoretical grounds for the shift
Q2→Q2+µ2 in (6) and (12)

Both the singlet and non-singlet components of g1 obey the
following Bethe–Salpeter equation, depicted in Fig. 1:

g1 = g
Born
1

+i

∫
d4k

(2π)4
(−2πi)δ

(
(q+k)2−m2q

) 2k2⊥
(k2−m2q)

2
M(p, k) ,

(24)

where the δ-function (together with the factor −2πi) cor-
responds to the cut propagator of the uppermost quark
with momentum k and mass mq coupled to the virtual
photon lines and 2k2⊥ appear after simplifying the spin
structure of the equation. M(p, k) stands for the cut par-
ton ladders and the initial parton densities. In other words,
M(p, k) incorporates both the initial parton densities and
radiative corrections to them. This object can be called the
polarized parton distribution function. In the present pa-
per we will address it simply as the (parton) distribution,
skipping the other terms. For the sake of simplicity we have
dropped unessential numerical factors (e2q/2 for f

NS and
〈e2q〉/2 for the singlet) in (24). Obviously,M in (24) cannot
depend onQ2.

4.1 Prescription for the IR regularization of M

The IR divergent contributions toM should be regulated.
We follow the standard prescription and assign a fictitious
mass µ to the gluons in the IR divergent propagators. In
particular, in the ladder graphs such propagators are the

Fig. 1. The Bethe–Salpeter equation for g1
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vertical ones. We assume that the value of µ satisfies (4).
In contrast to the gluon ladders, quark ladders are IR sta-
ble because the quark mass mq acts as an IR cut-off. In
order to use the same cut-off µ for regulating both gluon
and quark IR divergences, we assume that, in addition to
(4), µ�mq. After that,mq can be dropped. Therefore, in
order to regulate IR singularities, we should insert µ2 in the
IR divergent, strut (vertical) propagators, for both quarks
and gluons. The horizontal propagators (rungs) are IR sta-
ble. This converts (24) into

g1 = g
Born
1

+i

∫
d4k

(2π)4
(−2πi)δ((q+k)2)

2k2⊥
(k2−µ2)2

M(pk, k2+µ2) .

(25)

4.2 Solving the Bethe–Salpeter equation (25)

As the kinematics x� 1 is of Regge type, we need to ex-
press M in the Regge kinematics as well. Let us notice3

that the expressions forM can be obtained from our results
for g1 in [11–13] by replacing the external photon virtu-
ality q2 =−Q2 by the external quark virtuality k2 and x
by −k2/wα. In the first place, we focus on applying (24)
to gNS1 , the non-singlet part of g1 and denote by M

NS the
involved quark distribution. The expression for MNS ac-
counting for the total resummation of leading logarithmic
contributions can also be borrowed from our formula for
gNS1 obtained in [12, 13]. This expression reads

MNS(p, k) =∫ i∞
−i∞

dω

2πi

(
2pk

−k2+µ2

)ω
ωf(ω)δq(ω)

(
−k2+µ2

µ2

)HNS(ω)
,

(26)

where f = 8π2HNS, and δq(ω) is the initial quark density in
the ω-space andHNS is given by (8).HNS and f include the
total resummation of leading logarithmic contributions.
Similarly, the expression for the singlet distribution MS

can be obtained from our results for gS1 in [11]. It is conve-
nient to rewrite (25) in terms of the Sudakov variables for
momentum k:

k =−αq′+βp+k⊥ , (27)

with q′ = q+xp, so that q′2 ≈ p2 ≈ 0. Substituting (26) into
(25), using the Sudakov variables and changing the order of
the integrations, we obtain the following equation for gNS1 :

gNS1 = g
Born
1 +

1

8π2

∫ i∞
−i∞

dω

2πi
ωf(ω)δq(ω)

×

∫
dαdβdk2⊥

k2⊥

(wαβ+k2⊥+µ
2)
2

× δ
(
wβ+wxα−wαβ−k2⊥−Q

2
)

×

(
wα

wαβ+k2⊥+µ
2

)ω (
wαβ+k2⊥+µ

2

µ2

)HNS
, (28)

3 We will consider such distributions in more detail in our
next paper.

where we have denoted w = 2pq. As we consider x� 1, we
can neglect xα compared to β. Using the δ-function for in-
tegration over β, we arrive at

gNS1 = g
Born
1 +

1

8π2

∫ i∞
−i∞

dω

2πi
ωf(ω)δq(ω)

×

∫
dαdk2⊥

αQ2+k2⊥+µ
2

(
wα

αQ2+k2⊥+µ
2

)ω

×

(
αQ2+k2⊥+µ

2

µ2

)HNS
. (29)

The integration region in (25) is shown in Fig. 2. It is out-
lined by the following restrictions:

w� k2⊥ > 0, w�wα� αQ
2+k2⊥+µ

2 . (30)

Integrating over α and k2⊥ yields different contributions,
depending on the ratio between αQ2 and k2⊥. The most
important contribution comes from the region D in Fig. 2.
After integration over α in this region we get

gNS1 = g
Born
1 +

1

8π2

∫ i∞
−i∞

dω

2πi
ωf(ω)δq(ω)

1

ω

×

∫ w
Q2

dk2⊥
k2⊥+µ

2

(
w

k2⊥+µ
2

)ω (
k2⊥+µ

2

µ2

)HNS

= gBorn1 +
1

8π2

∫ i∞
−i∞

dω

2πi
f(ω)δq(ω)

×

∫ w+µ2
Q2+µ2

dt

t

(w
t

)ω ( t
µ2

)HNS
. (31)

The leading contribution in (31) comes from the lowest
limit, t=Q2+µ2, and it gives

gNS1 = g
Born
1 +

1

8π2

∫ i∞
−i∞

dω

2πi

f(ω)δq(ω)

(ω−HNS)

×

(
w

(Q2+µ2)

)ω (
Q2+µ2

µ2

)HNS
, (32)

which proves the validity of the shift Q2→Q2+µ2 sug-
gested in [26]. Let us brush up (32). Replacing f(ω) by
8π2HNS we see that in (32)

HNS

ω−HNS
=−1+

ω

ω−HNS
. (33)

The first term in (33) cancels the Born contribution gBorn1 ,
and the second term is the non-singlet coefficient function

Fig. 2. The integration
region over α and k2⊥ in
(29)
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(see (8)). Therefore, we arrive at (6) for the non-singlet gNS1
at small x and arbitrary Q2. Equation (12) for the singlet
g1 in the same kinematic situation can be proved similarly.

5 Infrared power corrections at small x

5.1 Power corrections at large Q2

In the kinematics where Q2 > µ2 and therefore x > z, the
terms with Q2+µ2 in (6) and (12) can be expanded into
the following series in µ2/Q2:

(
1

x+ z

)ω (
Q2+µ2

µ2

)HNS

=

(
1

x

)ω (
Q2

µ2

)HNS [
1+
∑
k=1

TNSk (ω)

(
µ2

Q2

)k]
,

(
1

x+ z

)ω (
Q2+µ2

µ2

)Ω±

=

(
1

x

)ω (
Q2

µ2

)Ω± [
1+
∑
k=1

T
(±)
k (ω)

(
µ2

Q2

)k]
, (34)

where

TNSk =

(−ω+HNS)(−ω+HNS−1) . . . (−ω+HNS−k+1)

k!
,

T
(±)
k =

(−ω+Ω±)(−ω+Ω±−1) . . . (−ω+Ω±−k+1)

k!
.

(35)

It allows one to rewrite (6) and (12) as follows:

gNS1 (x+ z,Q
2) =

g̃NS1 (x,Q
2)+ g̃NS1 (x/y,Q

2)⊗
∑
k=1

(µ2/Q2)kENSk (y) ,

gS1 (x+ z,Q
2) = g̃S1 (x,Q

2)+
∑
k=1

(µ2/Q2)k

×
[
g̃
(+)
1 (x/y,Q

2)⊗E(+)k (y)+ g̃
(−)
1 (x/y,Q

2)⊗E(−)k (y)
]
,

(36)

where, using the conventional terms, g̃NS1 and g̃S1 can be
named the non-singlet and singlet components of the low-
est twist contribution to g1:

g̃NS1 = (e
2
q/2)

∫ i∞

−i∞

dω

2πi

(
1

x

)ω
CNS(ω)δq(ω)

(
Q2

µ2

)HNS(ω)
,

g̃ S1 = g̃
(+)
1 + g̃

(−)
1 =

〈e2q〉

2

∫ i∞
−i∞

dω

2πi

(
1

x

)ω

×

[(
C(+)q

(
Q2

µ2

)Ω(+)
+C(−)q

(
Q2

µ2

)Ω(−))
δq

−
A′

2πω2

(
C(+)g

(
Q2

µ2

)Ω(+)
+C(−)g

(
Q2

µ2

)Ω(−))
δg

]

(37)

and

ENSk (x) =

∫ i∞
−i∞

dω

2πi

(
1

x

)ω
TNSk (ω) ,

E±k (x) =

∫ i∞
−i∞

dω

2πi

(
1

x

)ω
T±k (ω) . (38)

The right-hand sides in (36) are the products of the
power corrections and g̃1. We call these corrections the IR
power corrections. The functions g̃S1 , g̃

NS
1 in (37) were ob-

tained in [11–13], and they correspond to the lowest twist
contribution. They differ from the lowest twist DGLAP ex-
pressions for g1 by the total resummation of the leading
logarithms of x and by the new parametrization of αs given
by (11) and (23). At small x they include the most import-
ant contributions of the LO and NLO DGLAP formulas.
When the lowest twist expressions of (37) are used for an-
alysis of the experimental data of the polarized DIS, the
power series in the r.h.s. of (36) look as new independent
contributions. However, the left-hand sides of (36) account
for the total resummation of these corrections. Finally, let
us notice that the IR power corrections in (36) have noth-
ing to do with the standard parametrization αs = αs(Q

2)
as we do not use it.

5.2 Power corrections at small Q2

When Q2 < µ2, gNS1 and g
S
1 cannot be expanded similar to

(36). The power corrections for small Q2 are different. In-
deed in this case

(
1

x+ z

)ω (
Q2+µ2

µ2

)HNS

=

(
1

z

)ω [
1+
∑
k=1

TNSk (ω)

(
Q2

µ2

)k]
,

(
1

x+ z

)ω (
Q2+µ2

µ2

)Ω±

=

(
1

z

)ω [
1+
∑
k=1

T
(±)
k (ω)

(
Q2

µ2

)k]
. (39)

It leads to the following expressions for g1 at small Q
2:

gNS1 (x+ z,Q
2) =

g̃NS1 (z, µ
2)+ g̃NS1 (z/y, µ

2)⊗
∑
k=1

(Q2/µ2)k ENSk (y) ,

g S1 (x+ z,Q
2) = g̃S1 (z, µ

2)+
∑
k=1

(Q2/µ2)k

×
[
g̃
(+)
1 (z/y, µ

2)⊗E(+)k (y)+ g̃
(−)
1 (z/y, µ

2)⊗E(−)k (y)
]
,

(40)

where the lowest twist contributions g̃NS1 , g̃
S
1 are given by

(37), and ENSk and ESk are defined in (38). Both g̃
NS
1 and

g̃S1 do not depend on x and Q
2. Instead, they depend on

the total energy (p+ q)2 of the process and are constants
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when the 2pq is fixed. Both the x- and Q2-dependence are
now associated with the power corrections. Equations (36)
and (40) show that the IR Q2-corrections are different for
large and small Q2, so that the series of (40) cannot be
extrapolated into the region of small Q2 and similarly the
series in (36) cannot be extrapolated into the large-Q2 re-
gion. Besides the terms with (Q2)k given by (40), similar
contributions can come from other sources that are beyond
our control. However, the (Q2)k terms in (40) are multi-
plied by the functions g̃NS1 and g̃

S
1 , which include the total

resummation of the leading logarithms, and therefore they
are supposed to dominate, at small x, over the coefficients
at the other (Q2)k terms.
Although the large-Q2 expansion (34) and the small-

Q2 expansion (39) look quite similar, the power corrections
to gNS1 are actually different for large and small Q2. It is
easy to check that the term linear in µ2/Q2 is present in
the large-Q2 expansion of (36) for gNS1 , while the term with
Q2/µ2 is absent in the gNS1 expansion of (40).

6 Discussion

At the region of small x, the DGLAP ordering (3) should
be lifted for accounting for leading logarithms of 1/x,
so the IR cut-off µ should be introduced explicitly in
order to regulate the IR divergencies in every rung of the
Feynman graphs contributing to g1. Similarly to DGLAP,
µ can also play the role of the starting point of the
Q2-evolution, though not obligatory. With both the per-
turbative and non-perturbative contributions accounted
for, g1 does not depend on µ. However, this dependence
does exist when the non-perturbative contributions are ei-
ther neglected or accounted for implicitly through the fits
for the initial parton densities. In this case the structure
function g1 depends on the value of µ and on the way it
has been introduced. Introducing µ as the fictitious mass
inserted into the IR divergent propagators leads to (6) and
(12) suggested in [26] for g1. The expressions of (6) and
(12) include the total resummation of double-logarithms
and the most important part of the single-logarithms of x.
They are obtained from our previous results with the shift
Q2 → Q2+µ2. The theoretical grounds for such a shift
are given by (9)–(32). Equations (6) and (12), in con-
trast to DGLAP, can be used both for large and small Q2.
Having been expanded into the series in 1/(Q2)k at large
Q2 (or into the series in Q2 at small Q2), (6) and (12)
yield the power Q2-corrections. The series of the correc-
tions are represented by expressions (36) and (40). The
power series of (36) and (40) for large and small Q2 are
derived from the same formulas. However, after the ex-
pansion has been made, they cannot be related to each
other with simply varying Q2. We suggest that account-
ing for the new source of the power contributions given
by (6) and (12) can sizably change the conventional an-
alysis of the higher twists contributions to the polarized
DIS, because such contributions appear in the present an-
alysis of the experimental data as a discrepancy between
the experimental data and the SA predictions. Let us recall

that in [30] we showed that the singular (∼ x−α) factors
in the standard fits mimic the total resummations of lnk x,
i.e. they have a purely perturbative origin, contrary to
previous common expectations. Similarly, a good portion
of the commonly believed non-perturbative power correc-
tions in the conventional analysis of the experimental data
can actually be of perturbative IR origin. However, being
misinterpreted as non-perturbative terms, they can mimic
the power expansion in (36). In particular, (6) predicts
that the power ∼ 1(Q2)k-corrections to gNS1 should ap-
pear at Q2 � 1 GeV2 and cannot appear at smaller values
of Q2. It agrees with the phenomenological observations
obtained in [24, 25] from conventional analysis of experi-
mental data. On the other hand, (12) predicts that similar
power corrections to the singlet g1 should be seen at greater
values of Q2. Clearly, the use of (6) and (12) for the lower
twist contributions to g1, instead of DGLAP, would al-
low one to revise the impact of the genuine higher twists
contributions, which are known to be of non-perturbative
origin.
Finally, we would like to remind the reader that our re-

sults explicitly depend on the IR cut-off µ. As pointed out
in Sect. 2, such a dependence would vanish if analytic ex-
pressions for the probabilities Φq,g were obtained and used
in (6) and (12) instead of δq and δg.
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